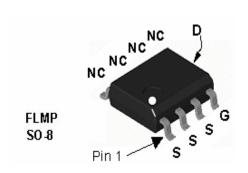
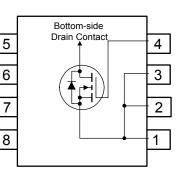
FAIRCHILD SEMICONDUCTOR®


FDS7288N3 30V N-Channel PowerTrench[®] MOSFET

General Description

This N-Channel MOSFET in the thermally enhanced SO8 FLMP package has been designed specifically to improve the overall efficiency of DC/DC converters. Providing a balance of low $R_{DS(ON)}$ and Qg it is ideal for synchronous rectifier applications in both isolated and non-isolated topologies. It is also well suited for both high and low side switch applications in Point of Load converters.

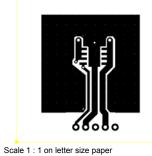

Applications

- Secondary side Synchronous rectifier
- Synchronous Buck VRM and POL Converters

Features

- 20.5 A, 30 V $R_{DS(ON)} = 4.5 \text{ m}\Omega \textcircled{0} V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 5.6 \text{ m}\Omega \textcircled{0} V_{GS} = 4.5 \text{ V}$
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low Qg and Rg for fast switching
- SO-8 FLMP for enhanced thermal performance in an industry-standard package outline.

Absolute Maximum Ratings T_A=25°C unless otherwise noted


Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source	ce Voltage		30	V
V _{GSS}	Gate-Source Voltage			±20	V
I _D Drain Current – Continuous		(Note 1a)	20		
		- Pulsed		60	
PD	Power Diss	ipation for Single Operati	ON (Note 1a)	3.0	W
			(Note 1b)	1.5	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		nperature Range	-55 to +150	
Therma	l Charac	teristics			
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient (Note			40	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Not			0.5	
Packag	e Markin	g and Ordering	Information		
Device I	Marking	Device	Reel Size	Tape width	Quantity
FDS7288N3		FDS7288N3	13"	12mm	2500 units

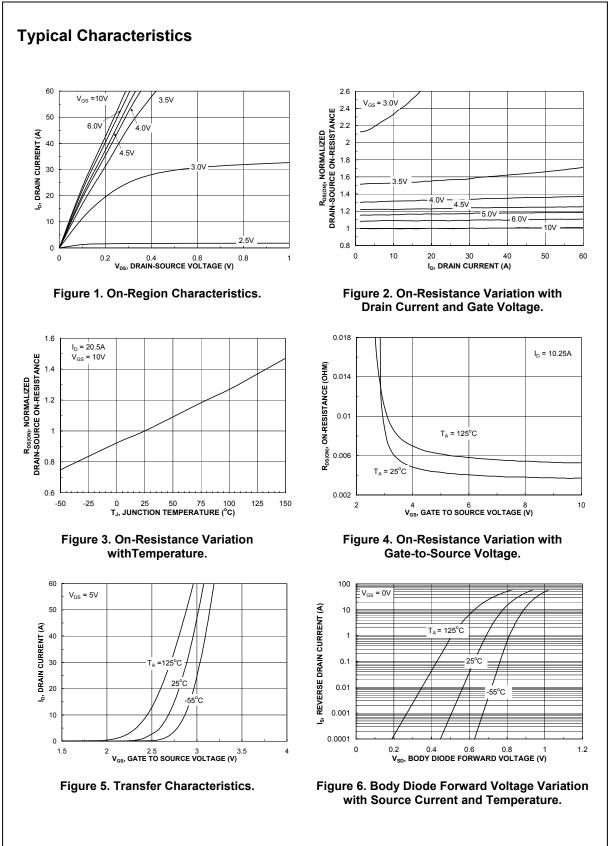
©2004 Fairchild Semiconductor Corporation

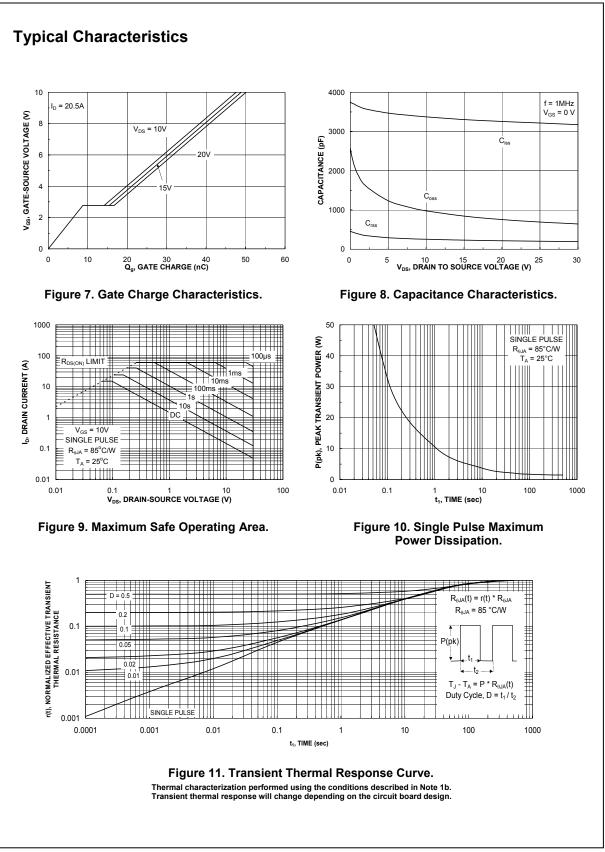
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$	24 V, V _{GS} = 0 V		10	μA
I _{GSS}	Gate–Body Leakage	V_{GS} = ± 20 V, V_{DS} = 0 V			± 100	nA
On Char	racteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	1	1.8	3	V
<u>ΔVGS(th)</u> ΔTJ	Gate Threshold Voltage Temperature Coefficient	hold Voltage $I_D = 250 \ \mu$ A, Referenced to 25° C		-5		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, I_D = 20.5 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 18.5 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 20.5 \text{ A}, T_J = 125^{\circ}\text{C}$		3.8 4.6 5.2	4.5 5.6 7.6	mΩ
g FS	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 20.5 \text{ A}$		106		S
Dynamic C	haracteristics			-		
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		3300		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		845		pF
C _{rss}	Reverse Transfer Capacitance			230		pF
R _G	Gate Resistance	V_{GS} = 15 mV, f = 1.0 MHz		1.6		Ω
Switching (Characteristics (Note 2)			-		-
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 15 V, I_D = 1 A,$		12	22	ns
tr	Turn–On Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		11	20	ns
t _{d(off)}	Turn–Off Delay Time			45	72	ns
t _f	Turn–Off Fall Time			32	51	ns
Qg	Total Gate Charge	V_{DS} = 15 V, I _D = 20.5 A, V _{GS} =10 V		49	69	nC
Qg	Total Gate Charge	$V_{DS} = 15 V, I_D = 20.5 A, V_{GS} = 5 V$		26	36	nC
Q _{gs}	Gate–Source Charge			8.8		nC
Q _{gd}	Gate-Drain Charge			6.7		nC
Drain–S	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Source	e Diode Forward Current			2.5	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 2.5 A$ (Note 2)		0.70	1.2	V
trr	Diode Reverse Recovery Time	$I_{\rm F} = 20.5 {\rm A},$		36		nS
Q _{rr}	Diode Reverse Recovery Charge	d _{iF} /d _t = 100 A/μs		25		nC

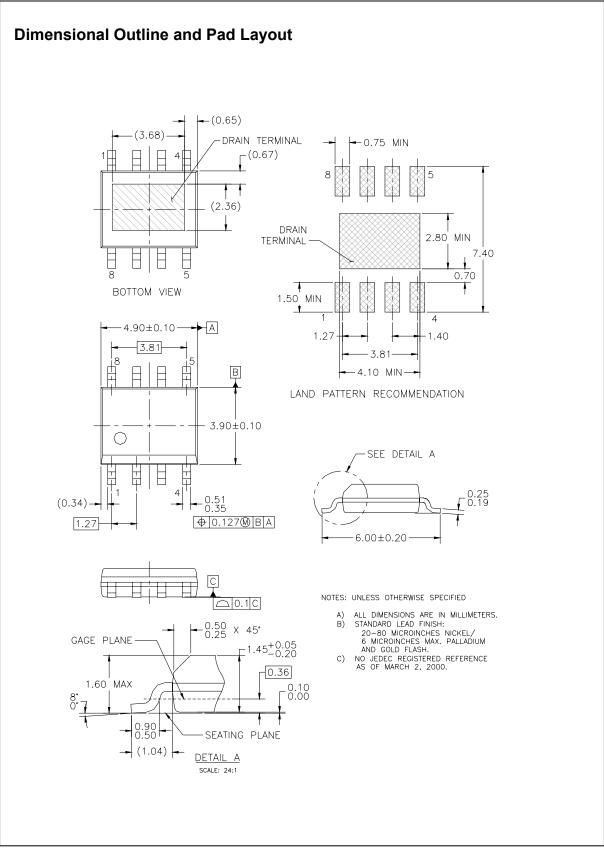
Notes:

1. R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

2. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%


a) 40°C/W when mounted on a 1in² pad of 2 oz copper




85°C/W when mounted on a minimum pad of 2 oz copper

b)

FDS7288N3 Rev C1 (W)

FDS7288N3 Rev C1 (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	ISOPLANAR™	POP™	Stealth™
ActiveArray™	FAST®	LittleFET™	Power247™	SuperFET™
Bottomless™	FASTr™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FPS™	MicroFET™	PowerTrench [®]	SuperSOT [™] -6
CROSSVOLT™	FRFET™	MicroPak™	QFET [®]	SuperSOT [™] -8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™່	MSX™	QT Optoelectronics [™]	TinyLogic [®]
E ² CMOS [™]	HiSeC™	MSXPro™	Quiet Series [™]	TINYOPTO™
EnSigna™	I ² C [™]	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
Across the boar	d. Around the world.™	OPTOLOGIC [®]	SILENT SWITCHER®	UltraFET [®]
The Power Franchise™		OPTOPLANAR™	SMART START™	VCX™
Programmable Active Droop™		PACMAN™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production